

SOP_hymanLab-04 – XMAP215 purification

Authors: Widlund et al. (Doi: <u>https://10.1073/pnas.1016498108</u>)

Adapted and edited by Martine Ruer & Mohamad Almedawar

Table of content

I.	List of abbreviations	2
1.	Aim	3
2.	Background	3
3.	Procedure	4
3.1	Buffers	4
3.2	Insect cell transfection and lysis	6
3.3	SP sepharose column purification	6
3.4	Ni-NTA sepharose His-Trap HP column purification	6
3.5	Size exclusion chromatography	7
4.	Attachments:	8
4.1	TH0427-pFastBac-XMAP215wt-7His	8
4.2	TH0224-pFastBacHT-XMAP215	9
5.	Change history	9
6.	References	9

I. List of abbreviations

%	Percent
°C	Degree Celsius
μg	Micrograms
μL	Microliter
BIIC	Baculovirus infected insect cell
CV	Column Volume
DTT	Dithiothreitol
H ₂ O	Water
KCI	Potassium Chloride
L	Liters
MES	2-(N-morpholino)ethanesulfonic acid
min	Minutes
mL	Milliliter
mM	Millimolar
PMSF	Phenylmethylsulfonylfluorid
rpm	Rounds per minute
RT	Room temperature
Xg	Gravity

1. **Aim**

This SOP is a systematic and written instruction on the procedure of XMAP215 protein purification in the laboratory of Prof. Anthony A. Hyman, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

2. Background

XMAP215/Dis1 family proteins positively regulate microtubule growth. The current protocol for the purification of XMAP215 has been adapted from Widlund et al (2011)ⁱ. The coding region of XMAP215 was originally modified by addition of either a C-terminal His7 tag or a C-terminal enhanced green fluorescent protein (GFP) His7 tag and cloned into the pFastBac1 vector. From these constructs, we generated Baculovirus (Bac-to-Bac system, Invitrogen) that was subsequently used to infect SF+ cells. This purification usually gives up to 5 mg protein per Liter of cells infected.

3. Procedure

3.1 Buffers

3.1.1 Lysis buffer

Chemical	Concentration (mM)
HEPES pH 7.5	50
NaCl	50
Glycerol	5 %
Triton-X	0.1 %
PMSF	0.1
Protease Inhibitor cocktail (Roche)	1 tablet per 50 mL buffer
CaCl2	10

3.1.2 Cation buffer

Chemical	Concentration (mM)
HEPES pH 7.5	6.7
NaCl	200
MES	6.7
Na-acetate	6.7

3.1.3 Cation Wash buffer I

Chemical	Concentration (mM)
HEPES pH 7.5	6.7
NaCl	75
MES	6.7
Na-acetate	6.7

3.1.4 Cation Wash buffer II

Chemical	Concentration (mM)
HEPES pH 7.5	6.7
NaCl	150
MES	6.7
Na-acetate	6.7

3.1.5 Cation Elution buffer

Chemical	Concentration (mM)
HEPES pH 7.5	6.7
NaCl	600
MES	6.7
Na-acetate	6.7

3.1.6 Imidazole buffer

Chemical	Concentration (mM)
Tris pH 8.0	50
NaCl	300
Glycerol	10 %
Imidazole	15

3.1.7 Imidazole wash buffer I

Chemical	Concentration (mM)
Tris pH 8.0	50
NaCl	300
Glycerol	10 %
Imidazole	30

3.1.8 Imidazole wash buffer II

Chemical	Concentration (mM)
Tris pH 8.0	50
NaCl	300
Glycerol	10 %
Imidazole	60

3.1.9 Imidazole elution buffer

Chemical	Concentration (mM)
Tris pH 8.0	50
NaCl	300
Glycerol	10 %
Imidazole	600

3.1.10 SEC elution buffer

Chemical	Concentration (mM)
Tris pH 6.6	10
Bis-Tris	10
KCI	100
Glycerol	10 %
DTT	1

3.2 Insect cell transfection and lysis

- 3.2.1 Infect SF+ (10⁶ cell/mL) cells in 500 mL medium with 1 % P2 Baculovirus stock
- 3.2.2 After 72 h, harvest cells by centrifuging at 1700 rpm for 15 min in a Hereaus Megafuge centrifuge
- 3.2.3 Resuspend cells using 50 mL of ice-cold Lysis buffer for every 500 mL of cells
 - If cells need to be stored, exclude the protease inhibitor cocktail tablet, PMSF and CaCl2 from the lysis buffer and snap freeze cells in liquid nitrogen
 - To continue the purification, thaw cells and add a complete protease inhibitor cocktail tablet (Roche), 0.1 mM PMSF and 10 mM CaCl2
- 3.2.4 Lyse cells using the LM20 microfluidizer with 2 passages at 15,000 psi
- 3.2.5 Clear crude lysate by centrifugation at 80,000 rpm for 45 minutes at 15 °C in a Beckman Ultramax centrifuge with a MLA-80 rotor – Collect 50 μL – Sample 1

3.3 SP sepharose column purification (5 ml HiTrap SP HP (GE Healthcare), peristaltic pump

at RT)

- 3.3.1 Rinse the column with 10 CV of H_2O at 5 mL/min
- 3.3.2 Equilibrate the column with 10 CV **Cation buffer** at 5 mL/min
- 3.3.3 Load crude supernatant (sample 1) at 2.5 mL/min Collect 50 μL of flow through Sample 2
- 3.3.4 Rinse the column with 10 CV Cation Wash buffer I at 5 ml/min Collect 50 μL of flow through Sample 3
- 3.3.5 Rinse the column with 10 CV Cation Wash buffer II at 5 ml/min Collect 50 μL of flow through Sample 4
- 3.3.6 Elute 1.5 ml fractions with **Cation Elution buffer** at 5 ml/min
- 3.3.7 Pool fractions containing the protein in Imidazole buffer after confirmation by Bradford Collect 50 μ L Sample 5

3.4 Ni-NTA sepharose His-Trap HP column purification (5 ml His-Trap HP column (GE

Healthcare), peristaltic pump at RT)

- 3.4.1 Rinse the column with 10 CV of H_2O at 5 mL/min
- 3.4.2 Equilibrate the column with 10 CV Imidazole buffer at 5 mL/min
- 3.4.3 Load pooled protein fractions (sample 5) at 1 mL/min Collect 50 μL of flow through Sample 6

- 3.4.4 Rinse the column with 10 CV Imidazole wash buffer I at 2.5 ml/min Collect 50 μ L of flow through -Sample 7
- 3.4.5 Rinse the column with 10 CV Imidazole wash buffer II at 2.5 ml/min Collect 50 μ L of flow through Sample 8
- 3.4.6 Elute 1.5 ml fractions with Imidazole elution buffer at 5 ml/min
- 3.4.7 Pool fractions containing the protein after confirmation by Bradford Collect 50 μL Sample 9

3.5 Size exclusion chromatography (Superdex 200 16/60 (GE Healthcare), AKTA pure at

RT)

- 3.5.1 Equilibrate column using 10 CV SEC elution buffer at 5 mL/min
- 3.5.2 Load sample 9 on column and collect peak fractions
- 3.5.3 Pool fractions and concentrate to at least 6 μM using an Amicon Ultra 10 K MWCO concentrator (Millipore) and add Glycerol to 10 % v/v final

4. Attachments:

4.1 TH0427-pFastBac-XMAP215wt-7His

4.2 TH0224-pFastBacHT-XMAP215

Version....from Page(s) Changes/ additions

6. References

ⁱ Widlund, P. O., Stear, J. H., Pozniakovsky, A., Zanic, M., Reber, S., Brouhard, G. J., et al. (2011). XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. *Proceedings of the National Academy of Sciences*, *108*(7), 2741–2746. doi:10.1073/pnas.1016498108