A role for RNA in Stress Granules assembly
Stress granules are membraneless compartments formed by phase separation of specific molecules upon exposure to cellular stress such as oxidative stress, heat shock, or osmotic stress.
The Alberti, Jahnel, Honigmann, and Hyman labs published a study in cell highlighting the role of RNA in the assembly of stress granules by crosslinkinig with G3BP clusters and how G3BP clusters in return prevent RNA entanglement. The study entitled “RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation” is in collaboration with Washington University, the European Molecular Biology Laboratory, Heidelberg, and Pohang University of Science and Technology, Korea.
Graphical Abstract:
Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.
Read the full publication
https://www.sciencedirect.com/science/article/pii/S0092867420303421
Current news by our research groups
Agnes Toth-Petroczy receives Schering Young Investigator Award 2025
According to the Schering Stiftung website: "The Schering Stiftung annually awards the Schering Young Investigator Award, honoring scientists who have demonstrated outstanding achievements in basic research across the spectrum of life sciences... It carries a prize money of € 10,000." Agnes…
New Study: Molecular dynamics investigation of polymer-decorated nanoparticles with co-nonsolvent: Structural transitions from isotropic layers to heterogeneous patches
A new study by Sommer and colleagues in the Journal of Chemical Physics investigates how polymer-decorated nanoparticles (PDNPs)—tiny particles coated with grafted polymer chains—undergo structural changes in mixed-solvent environments. Using detailed molecular dynamics simulations, the authors…
Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates
A new study from the labs of Honigmann, Hyman, and Alberti in Dresden, in addition to colleagues in Texas A&M University, Mayo Clinic, Brown University, and Saint Louis University investigates the mechanism behind pathological outcomes of protein aggregation inside stress granules. The authors…
Impact of Coiled-Coil Domains on the Phase Behavior of Biomolecular Condensates
A new Study from the Harmon and Sommer Labs in ACS Macro Letters entitled 'Impact of Coiled-Coil Domains on the Phase Behavior of Biomolecular Condensates' addressed how the geometry and structure of folded domains impact condensate formation. They used coarse-grained simulations to determine that…