© MPI-CBG

Research Focus

From Alan Turing we know that rates of biochemical reactions (in units of seconds) need to be coupled to physical processes to account for the generation of spatial structure (in units of meters). Suggested morphogenetic driving forces include: passive or active diffusion, directed motor-driven fluxes, and the enigma of cytoplasmic streaming.  Since Turing, a great deal of causal insight into the biochemical basis of cellular organization and morphogenesis has been attained by genetic perturbations. In stark contrast to this, the functional role of physical transport in morphogenesis and homeostasis remains very poorly understood. Specifically, we lack the ability to test the functional role of these physical processes inside cells by appropriate perturbations, i.e.: how would one change direction, velocity or temporal persistence of flows within the cytoplasm of a developing embryo? This is clearly not possible by genetics. As a result of this methodological shortcoming to test competing hypothesizes, there is hardly one accepted proof of a reaction-transport system in biology.


Current news by this research group

A role for RNA in Stress Granules assembly

Stress granules are membraneless compartments formed by phase separation of specific molecules upon exposure to cellular stress such as oxidative stress, heat shock, or osmotic stress. The Alberti, Jahnel, Honigmann, and Hyman labs published a study in cell highlighting the role of RNA in the…

Read More

Filament formation by the translation factor eIF2B regulates protein synthesis in starved cells

Aminoacyl-tRNA synthetases (aaRSs), the enzymes responsible for coupling tRNAs to their cognate amino acids, minimize translational errors by intrinsic hydrolytic editing. Here, we compared norvaline (Nva), a linear amino acid not coded for protein synthesis, to the proteinogenic, branched valine…

Read More

Condensation regulates translation

New insights into the influence of Ded1p condensation on translation comes from the Hyman, Alberti and Kreysing labs. The study published in Cell is entitled "Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production". Graphical abstract: Abstract: Cells…

Read More

Alberti Lab is accepting applications for MSc, PhD, and Postdoc

We are always looking for highly motivated and creative students. Students interested in a master’s project with a focus on biochemistry, biophysics or cell biology are encouraged to apply. Students interested in a PhD project should apply to the Dresden International Graduate School for…

Read More

Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase

Theskeleton that supports the structure of our cells, termed cytoskeleton is formed of several kinds of polymers including actin and microtubules. How the single units on the polymers (monomers and dimers) are concentrated to gether to synthesize the polymer is the subject of this study by the labs…

Read More