Phase Transition in Disease
In this video and the accompanying Cell paper, the Tony Hyman and Simon Alberti groups at Max Planck Institute propose an interesting idea that aging cells fail to maintain the liquid phase of ALS-associated protein FUS. The FUS liquid compartment instead forms disease-link solid phase aggregation.
Check out the paper at: http://www.cell.com/cell/abstract/S00….
Avinash Patel, Hyun O Lee, Louise Jawreth, Shovamayee Maharana, Marcus Jahnel, Marco Y. Hein, Stoyno Stoynov, Julia Mahamid, Shambaditya Saha, Titus M. Franzmann, et al. (2015). A Liquid to Solid Phase Transition of the ALS Protein FUS Correlates with Disease. Cell 162. And read more great research at http://www.cell.com/cell/home.
Current news by our research groups
Agnes Toth-Petroczy receives Schering Young Investigator Award 2025
According to the Schering Stiftung website: "The Schering Stiftung annually awards the Schering Young Investigator Award, honoring scientists who have demonstrated outstanding achievements in basic research across the spectrum of life sciences... It carries a prize money of € 10,000." Agnes…
New Study: Molecular dynamics investigation of polymer-decorated nanoparticles with co-nonsolvent: Structural transitions from isotropic layers to heterogeneous patches
A new study by Sommer and colleagues in the Journal of Chemical Physics investigates how polymer-decorated nanoparticles (PDNPs)—tiny particles coated with grafted polymer chains—undergo structural changes in mixed-solvent environments. Using detailed molecular dynamics simulations, the authors…
Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates
A new study from the labs of Honigmann, Hyman, and Alberti in Dresden, in addition to colleagues in Texas A&M University, Mayo Clinic, Brown University, and Saint Louis University investigates the mechanism behind pathological outcomes of protein aggregation inside stress granules. The authors…
Impact of Coiled-Coil Domains on the Phase Behavior of Biomolecular Condensates
A new Study from the Harmon and Sommer Labs in ACS Macro Letters entitled 'Impact of Coiled-Coil Domains on the Phase Behavior of Biomolecular Condensates' addressed how the geometry and structure of folded domains impact condensate formation. They used coarse-grained simulations to determine that…